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Abstract
Purpose: Lung tumor tracking during stereotactic radiotherapy with the
CyberKnife can misrecognize tumor location under conditions where similar pat-
terns exist in the search area. This study aimed to develop a technique for bone
signal suppression during kV-x-ray imaging.
Methods: Paired CT images were created with or without bony structures
using a 4D extended cardiac-torso phantom (XCAT phantom) in 56 cases.
Subsequently, 3020 2D x-ray images were generated. Images with bone were
input into cycle-consistent adversarial network (CycleGAN) and the bone sup-
pressed images on the XCAT phantom (BSIphantom) were created. They were
then compared to images without bone using the structural similarity index mea-
sure (SSIM) and peak signal-to-noise ratio (PSNR). Next, 1000 non-simulated
treatment images from real cases were input into the training model, and
bone-suppressed images of the patient (BSIpatient) were created. Zero means
normalized cross correlation (ZNCC) by template matching between each of
the actual treatment images and BSIpatient were calculated.
Results: BSIphantom values were compared to their paired images without
bone of the XCAT phantom test data; SSIM and PSNR were 0.90 ± 0.06
and 24.54 ± 4.48, respectively. It was visually confirmed that only bone was
selectively suppressed without significantly affecting tumor visualization. The
ZNCC values of the actual treatment images and BSIpatient were 0.763 ± 0.136
and 0.773 ± 0.143, respectively. The BSIpatient showed improved recognition
accuracy over the actual treatment images.
Conclusions: The proposed bone suppression imaging technique based on
CycleGAN improves image recognition, making it possible to achieve highly
accurate motion tracking irradiation.
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1 INTRODUCTION

Stereotactic body radiation therapy (SBRT) has been
widely applied as a treatment modality for early stage
non-small cell lung cancer (NSCLC). SBRT combines
the techniques of multidirectional irradiation and pre-
cise irradiation of lesions to improve local control of
tumors confined to the trunk region and reduce adverse
events in normal tissue nearby. SBRT is also capa-
ble of high efficacy with a single large dose, which
cannot be achieved with conventional radiotherapy.1

The CyberKnife (CK) System (Accuray Inc., Sunny-
vale, CA, USA) integrates a robotic-positioned linear
accelerator, an image-guided system, and respiratory
tracking systems. CK has two respiratory tracking sys-
tems: the fiducial-based target tracking system (FTTS)
and Xsight Lung Tracking System (XLTS).2 XLTS is a
fiducial-free real-time tracking system used to irradiate
lung tumors that move with respiration.3 This facili-
tates the minimization of radiation exposure to healthy
pulmonary tissues, thereby enhancing the efficacy of
treatment.4,5 This system, called target locating system
(TLS), uses a pair of orthogonal x-ray imagers, which
enable real-time tracking of moving targets by modeling
the correlation between the targets and external surro-
gate light-emitting diode markers placed on the patient’s
chest.6 With this system, the patient’s treatment area
is tracked using real-time imaging, and the error in the
irradiated area is less than 1 mm.7,8

Generally, sufficient tumor contrast relative to the sur-
rounding tissue in an x-ray image is essential for accu-
rate soft-tissue tracking.XLTS performs template match-
ing to match the image density pattern of the tumor
region in digitally reconstructed radiography (DRR) with
the most similar region in the live x-ray image. This
may affect visibility, especially in cases with overlap-
ping bone. Because the tumor recognition accuracy is
not universal for all lesions, the author implemented
an approach for bone suppression imaging using a
type of general adversarial network (GAN), called cycle-
consistent adversarial network (CycleGAN). In recent
years, GANs have shown state-of -the-art performance
in many image-processing tasks.9,10 In addition, Cycle-
GAN was proposed to learn translation mappings in the
absence of aligned paired images.10 Recently, Cycle-
GAN was used to synthesize CT images from cone
beam CT (CBCT) images.11 However, no research has
been conducted to date that incorporates CycleGAN
into a CK motion-tracking algorithm. Therefore, this
study aimed to use deep learning to develop a bone
suppression imaging technique for kV x-ray images.

2 MATERIALS AND METHODS

After the images with bone were input to the trained
model to create bone suppressed images, the images

generated by CycleGAN (BSIphantom) were compared
to images without bone. Next, BSIpatient were generated
from the images used for actual CK treatment, and the
effectiveness of deep learning was compared by tem-
plate matching for each of the actual treatment images
and BSIpatient. The workflow is illustrated in Figure 1.

2.1 Data

2.1.1 XCAT phantom (4D extended
cardiac-torso phantom) images

We first created images from XCAT phantom (Duke
University, Durham, North Carolina)12,13 to project the
images to be used in the deep-learning datasets. XCAT
phantom is a digital anthropomorphic phantom image
database that was developed based on the human
anatomy database of the National Library of Medicine.
Based on patient data and using non-uniform ratio-
nal b-spline surfaces to define the anatomy, the XCAT
phantom combines a voxelized approach with a math-
ematical approach to offer simulated imaging with
realistic and detailed organs that remain flexible to allow
for anatomical variation and organ deformation.14–16 In
addition, the XCAT phantom is positioned off the cen-
ter of the image, but patient images in CT images can
rotate,shift,or exceed the field of view.Here,we used 56
samples from this phantom,which all differed in age,sex,
nationality, height, and weight. The dataset included 56
men and women aged 18−78 years, weight 52−120 kg,
height 153−190 cm, and BMI:18-39 kg/m2. The dxcat2
code of the XCATv2 software package was used by
turning off the activity unit of the bone to obtain images
with and without bony structures, as shown in Figure 2a.
For settings, bone size parameter of 1, pixel width and
slice width of 0.03 cm,and array size of 512 × 512 were
used.

Next, to create 2D CK images based on these
images, we used 3D Slicer ver.4.11 software (MIT, Mas-
sachusetts, USA) to create 45◦ images, as shown in
Figure 2b. Images at 40◦ and 50◦ were created in
the same manner in order to increase the number of
datasets used, as shown in Figure 2c. The View-Up
vector was set to (x,y,z) = (−1,0,45), Normal vector to
(x,y,z) = (any angle,−45,0), and Isocentor position to
(x,y,z) = (0,0,0). These were then divided into nine seg-
ments, as shown in Figure 2d. This process created a
total of 3020 images, of which, data from 340 images
were used for testing.

2.1.2 Treatment images

To evaluate the model, data from actual treated patients
were required. This was obtained from 50 patients
with metastatic lung cancer (tumor size 8–64 mm) and
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F IGURE 1 Work-flow of the bone suppression and evaluation framework.

F IGURE 2 Creation of image datasets with and without bone XCAT phantom. (a): With (L)/without (R) bone generated from XCAT
Phantom, (b): Pseudo-projecting the XCAT phantom, Projections with 5 degree difference, (d): The projected images with (L)/without (R) bone as
in (b) were divided into 9 segments.

primary lung cancer (tumor size 10–62 mm) undergo-
ing SBRT at our center between February 2020 and
January 2022. 40 patients were male and 10 were
female. The ages of the patients were between 46
and 93 years (average age, 74.14). All patients were
treated with the CK G4 system using 2-view XLTS
(100 kV/200 mA/100 ms).

2.2 Optimization and training methods

The training methods and parameters were based on
CycleGAN. Similar to pix2pix,17 Zhu et al. proposed
CycleGAN, a type of image-generation algorithm using
GAN.10 Figure 3 shows the CycleGAN procedure. The
domain of the images was defined, and images were
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F IGURE 3 Procedure of CycleGAN. CycleGAN is a method that achieves image transformation by learning domain relationships such as
fields and regions between two images.

collected for each domain as training data. The main
feature of CycleGAN is that there is no need to pre-
pare a pair of training data. The set of images for each
domain is denoted as X and Y, and a generator is pre-
pared to perform X-to-Y and Y-to-X transformations on
them. The default generator architecture of CycleGAN
is ResNet, while the default discriminator architecture is
a PatchGAN classifier.17,18 In addition, two discrimina-
tors corresponding to both were prepared.The proposed
method enables non-pairwise image transformations by
learning the error (loss) between adversarial loss used
in the GAN and the cycle consistency Loss proposed in
this study. However, it is shown to be less accurate than
pix2pix because of unsupervised learning.

In this study, the algorithm was run on a workstation
with an NVIDIA® GeForce® RTX 2080 SUPER™ 8GB
GPU. Adam19 was used as the optimizer, with β1 = 0.5
and β2 = 0.999. The learning rate was set to 0.0002
for both the generator and discriminator. Both the gen-
erator and discriminator were updated once for each
iteration, and the training was terminated when each
network was considered to have been generated with
a certain degree of accuracy.

2.3 Evaluation methods

The BSIphantom was compared to images without bone
from the test data, and the similarity was calculated.
We evaluated the models with two different objective
image quality metrics, namely, the structural similarity
index (SSIM)20 and peak signal-to-noise ratio (PSNR).21

SSIM is a method to evaluate image quality based
on the structural information of an image; it is shown in
Equations (1) and (2). Equation (1) was used to obtain

the SSIM for each block, and Equation (2) was used to
obtain the average SSIM for all blocks.

SSIM(x, y) =
(2𝜇x𝜇y + C1)(2𝜎xy + C2)(

𝜇x
2 + 𝜇

y
2 + C1

) (
𝜎x

2 + 𝜎
y
2 + C2

) (1)

MSSIM = 1∕M
M∑

j=1

SSIM(xj, yj) (2)

where x is one block of the reference image, y is one
block of the test image, and 𝜇 is the average per block
of the Gaussian filtered image. Similarly,𝜎2 refers to the
variance per block of the Gaussian filtered image: C1
and C2 are constants, (0.01 × 255)2 and (0.03 × 255)2,
respectively. M is the number of blocks.

PSNR is an index obtained by the ratio of the mean
squared error (MSE) of the reference image and the test
image to the maximum grayscale value (PS = 255).The
PSNR is shown in Equation (3), and the MSE is shown
in Equation (4).

PSNR = 10 log10

(
PS2

MSE

)
(3)

MSE =
1
N

N∑
1

(xi − yi)
2 (4)

where xi represents the reference image; yi represents
the gray scale value of the test image; N represents the
total number of images.

Next, template matching22,23 was performed on each
of the actual treatment images and BSIpatient to calculate
the zero-mean normalized cross-correlation (ZNCC).24

Therefore, in this study, the search area was the entire
image and the goal was to capture the tumor contour.
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F IGURE 4 Examples between the test data and BSI. (a): the test data with bone, (b): the test data without bone, (c): BSIphantom, (d–f):
partially enlarged versions of (a–c), (g): actual treatment images and (h): BSIpatient, the blue line in the patient data shows the TTV.

The detection method using template matching is the
most basic and determines the location of the target
in the input image by comparing the input image with
the partial image of the target to be tracked, which was
prepared in advance. ZNCC is a measure that uses the
average luminance values of the template and input
image to compensate for the effects of the lighting envi-
ronment.The location with the highest value is the target
location. In addition, ZNCC is a general measure of
image similarity and ranges from −1 to 1,with a value of
1 when the two images are exactly matched. After 1000
actual treatment images were run through CycleGAN to
BSIpatient, template matching was performed on each of
the actual treatment images and BSIpatient to calculate
ZNCC.

2.4 Statistical analysis

All statistical analyses were performed using SPSS
Statistics for Windows (version 27.0; IBM Corp.,Armonk,
NY, Version 27.0. Armonk, NY: IBM Corp). Differences
between the groups were compared using independent
T-tests. Alpha was set to 0.05.

3 RESULTS

Figure 4 shows examples of BSIphantom compared to the
test data without bone,and the similarity was calculated.
The bone intensity was generally reduced, although
some remained intact. The mean of SSIM and PSNR
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F IGURE 5 Template matching for each of actual treatment images and BSIpatient. The upper figure shows (a,c): actual treatment images
and (b,d): BSIpatient. The green box in the patient data shows the region of high similarity in template matching, demarcated by rectangular
windows. The middle figure shows heatmaps for the similarity of each image. The bottom figure shows the subtraction images for both pairs.

were 0.90 ± 0.06 and 24.54 ± 4.48, respectively, indicat-
ing high similarity. Figure 4g,h show examples of image
generation using CycleGAN. The blue line indicates a
tumor tracking volume (TTV). The bone intensity was
suppressed, and tumor contours remained after image
generation.

Next, template matching was performed using the
actual treatment images and BSIpatient, and the ZNCC
was calculated for each. Figure 5 shows two exam-
ples of template matching. The middle figure shows
heatmaps for the similarity of each image. ZNCC is
vectorized each cell in the heatmap and calculated the
similarity based on its angle. The red color is indicated
higher similarity; ZNCC was significantly different and
higher for images without bone structures.The heatmap
visualizes the model based on these differences.

Table 1 shows the average ± standard deviation of
ZNCC for the 767 images that could be detected by tem-
plate matching. The p-value was less than 0.05, which
was considered statistically significant, indicating that
the BSIpatient had higher ZNCC than the actual treatment
images.

4 DISCUSSION

This is the first report that tried to incorporate CycleGAN
into a CK motion-tracking algorithm, and the promis-

TABLE 1 ZNCC was calculated by template matching of actual
treatment images and BSIpatient, respectively.

Image types

Total
number of
images

Number of
images
identified
correctly (%) ZNCC

Actual treatment
images

1000 767 (76.7) 0.763 ± 0.136*

BSIpatient 1000 800 (80.0) 0.773 ± 0.143*

*p < 0.05 significantly different compared with the reference.

ing result is expected to gain worldwide recognition. We
propose the use of CycleGAN to learn to suppress the
intensity of bony structures on TLS radiographs. Exper-
imental evaluations on the XCAT phantom datasets
validated the effectiveness of the framework developed
to do this.

Using existing methods, tumors are difficult to detect
because the visibility of the tumor in the live image
is reduced when the tumor overlaps bony structures,
and the image quality is degraded. In this study, deep
learning and evaluation were performed using a dataset
created from the XCAT phantom to generate bone-
suppression images for the XLTS.This method holds the
promise of achieving a high level of accuracy through
the training of the model using images with and with-
out bone.However, in this study,actual treatment images
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were run through CycleGAN to generate images with-
out bone, and there were cases in which bone intensity
reduction was difficult. This may be due to the possi-
bility that the images were not recognized as bone, in
which case, improved datasets may be required. As a
measure to create data sets that suppress bone inten-
sity, image processing techniques such as dual energy
subtraction have been used recently in order to improve
the detection of pulmonary nodules.25 In a study exam-
ining the detection of thoracic masses, the use of
soft-tissue images significantly improved the detection
of masses.26 In addition, a model was constructed to
generate soft tissue chest images using GAN, and com-
parison with test data showed that the generated images
had a high degree of similarity, indicating their clinical
usefulness.27

In addition, there was a discrepancy between the
location of the tumor and that indicated by template
matching. Because template matching searches for the
location where the similarity between the input image
and template is maximized, it is difficult to accommodate
changes in the appearance of the target, such as rota-
tion. To solve this problem, variable template matching,
in which the template is updated when tracking is suc-
cessful,has been proposed,but there is an accumulation
of errors due to background contamination in the tem-
plate and difficulty in determining the success or failure
itself.28–30

As a limitation, XLTS is used uncertainty values to
evaluate detection uncertainty, but the algorithm varies
from version to version and the details are not publicly
available. Therefore, this was addressed in this study by
calculating the similarity using ZNCC.

For images in which tumors could not be recognized
using this method, the reason for the failure to recog-
nize the tumors was considered to be poor background
removal processing. If the tumor to be recognized is
complex and contains considerable noise,noise removal
cannot be performed well. Furthermore, recognition
becomes impossible owing to the inclusion of noise and
the tumor.

Therefore, our future studies will investigate a new
recognition method that utilizes new features such as
noise reduction and contrast.

5 CONCLUSION

In this study, we generated and evaluated CycleGAN
images using a dataset created with the XCAT phantom
to generate bone suppression images for the XLTS. The
proposed bone suppression imaging technique based
on CycleGAN improves the image similarity in template
matching, making it possible to achieve highly accurate
markerless motion tracking irradiation. The possibilities
for future studies are included evaluation experiments of

the constructed algorithms and their implementation in
phantoms on simulated tumors for clinical applications.
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